Mohammad Sajid Anwar

2022 WHITE CAMEL AWARDEE
https://manwar.org
https://github.com/manwar
https://theweeklychallenge.org

Design Patterns

in
Modern Perl

Modern Perl?

v5.38 - Jul 2023
v5.40 - Jun 2024
v5.42 - Jul 2025

Latest Release

v5.43.5 - Nov 2025

https://metacpan.org/release/CONTRA/perl-5.43.5/view/pod/perldelta.pod

Example experimental named parameters

#!/usr/bin/env perl

use v5.43;

use experimental 'signature_named_parameters';

sub hello(:5name = "Bob") {

return "Hello Sname!!";

say hello(); # Hello Bob!!

say hello(name =>"Joe"); # Hello Joe!!

Try Pitch

https://github.com/manwar/perl-cool-snippets

— 45 stars on GitHub —

Design Patterns
Elements of Reusable
Object-Oriented.Software
Erich Gamma

Richard Helm

Ralph Johnson
John Vlissides

Gang of Four Book

toreword by Gracl Booch

Try Pitch

Abstract Factory Adapter

Builder Bridge

Factory Method Composite

Prototype Filter
Singleton Decorator
Facade

Proxy

Try Pitch

Chain of Responsibility
Command
Interpreter

Iterator
Mediator
Memento
Observer

State
Strategy
Template

Visitor

2021
https://github.com/manwar/Design-Patterns

— 57 stars on GitHub —

Main Features

Used Moo as base OOP framework

Implemented 17 out of 23 design patterns (pure code)

Try Pitch

What is missing?

Raw bless-based class implementation

Also Object::Pad implementation

Try Pitch

Sep 2025

https://theweeklychallenge.org/blog/design-pattern-factory
[Moo, Object::Pad, experimental class]

Raw bless-based class

Object::Pad

Experimental class feature

Try Pitch

Prototype

Singleton

Composite

Memento

Try Pitch

What's the blocker?

Missing support for role in raw bless-based class

Also in the experimental class feature (v5.42+)

Try Pitch

What's the solution?

Add support for role in raw bless-based class

How about the same in experimental class feature (v5.42+) ?
(beyond my capacity)

Fallback to Object::Pad, easy choice.

Try Pitch

Class:Mite
https://github.com/manwar/Class-Mite

Class::Clone Class::More

Inheritance using Class from Class::Mite

package Parent;
use Class;
sub location {
my (Sself) = @_;
return $self->{name}, " lives in London!\n";

package Child;

use Class;

extends qw/Parent/;

package main;

print Child->new(name => 'Tom')->location;

Try Pitch

Interface using Role from Class::Mite

package Animal;

use Role;

requires qw/speak/;

package Dosg;

use Class;

with qw/Animal/;

sub speak {

my ($self) = @_;

return $self->{name}, " bark!\n";

package main;

print Dog->new(name => 'Tommy')->speak;
Try Pitch

Comparative Analysis

https://theweeklychallenge.org/blog/bless-vs-class-mite

Singleton Design Pattern

Why?
No role needed.
Single class is enough for demo.

Singleton Design Pattern using raw bless

package Singleton;

our SINSTANCE;

sub instance { SINSTANCE //= bless { count => 0}, __PACKAGE__; }

=

sub counter { ++shift->{count}; }

package main;
print Singleton->instance->counter; # 1
print Singleton->instance->counter; # 2

print Singleton->instance->counter; # 3

Try Pitch

Singleton Design Pattern using Class from Class::Mite

package Singleton;

use Class;

my Sinstance;

sub BUILD { shift->{count} //= 0 }
sub instance { Sinstance //= __PACKAGE__->new }

sub counter { ++shift->{count} }

package main;

print Singleton->instance->counter; # 1
print Singleton->instance->counter; # 2

print Singleton->instance->counter; # 3

Try Pitch

Singleton Design Pattern using Moo and MooX::Singleton

package Singleton;

use Moo;

with qw/MooX::Singleton/;

has 'count' => (is => 'rw', default => sub { 0 });

sub counter($self) {

Sself->count($self->count + 1)

package main;

print Singleton->instance->counter; # 1

print Singleton->instance->counter; # 2

print Singleton->instance->counter; # 3

Try Pitch

Singleton Design Pattern using experimental class feature

use v5.42;

use experimental qw/class/;

class Singleton {
field Scount = 0;

state Sinstance;

sub instance { Sinstance //= __PACKAGE__->new }

method counter { ++Scount }

package main;

print Singleton->instance->counter; # 1
print Singleton->instance->counter; # 2

print Singleton->instance->counter; # 3

Try Pitch

Singleton Design Pattern using Object::Pad

use Object::Pad;

class Singleton {
my Sinstance;
field Scount :reader :writer = 0;
method instance :common {

Sinstance //= __PACKAGE__->new;

method counter {

Sself->set_count($self->count + 1);
return Sself->count;

package main;
print Singleton->instance->counter; # 1
print Singleton->instance->counter; # 2

print Singleton->instance->counter; # 3
Try Pitch

Personal Blogs

https://theweeklychallenge.org/blogs

29th Nov 2025

Buy on Amazon / LeanPub

https://perlschool.com/books/design-patterns

Design Patterns in Modern Perl

Practical Patterns for Everyday Perl

Mohammad Sajid Anwar
{Perl School}

Thank You

Organiser: Andrew Mehta and JJ Atria
Gold Sponsor: https://perlfoundation.org

Bronze Sponsor: https://www.simplelists.com

Try Pitch

